МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 4 ИМЕНИ ПОЛНОГО КАВАЛЕРА ОРДЕНА СЛАВЫ Д.В.БОНДАРЕНКО

Приложение № 4 к основной образовательной программе основного общего образованияМБОУ СОШ № 4 им. Д.В.Бондаренко утвержденной приказом 97-ОД от 19.08.2021

РАБОЧАЯ ПРОГРАММА ПРЕДМЕТА «ХИМИЯ» 8 « А» КЛАСС

г.Зверево

2021-2022

1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1.1 Цели и задачи курса химии в 8 классе

Химия, как одна из основополагающих областей естествознания, является неотъемлемой частью образования школьников. Каждый человек живет в мире веществ, поэтому он должен иметь основы фундаментальных знаний по химии (химическая символика, химические понятия, факты, основные законы и теории), позволяющие выработать представления о составе веществ, их строении, превращениях, практическом использовании, а также об опасности, которую они могут представлять. Изучая химию, учащиеся узнают о материальном единстве всех веществ окружающего мира, обусловленности свойств веществ их составом и строением, познаваемости и предсказуемости химических явлений. Изучение свойств веществ и их превращений способствует развитию логического мышления, а практическая работа с веществами (лабораторные опыты) — трудолюбию, аккуратности и собранности. На примере химии учащиеся получают представления о методах познания, характерных для естественных наук (экспериментальном и теоретическом).

Основное общее образование — вторая ступень общего образования. Одной из важнейших задач этого этапа является подготовка обучающихся к осознанному и ответственному выбору жизненного и профессионального пути. Обучающиеся должны научиться самостоятельно ставить цели и определять пути их достижения, использовать приобретенный вшколе опыт деятельности в реальной жизни, за рамками учебного процесса.

Главные цели основного общего образования:

- 1) формирование целостного представления о мире, основанного на приобретенных знаниях, умениях и способах деятельности;
- 2) приобретение опыта разнообразной деятельности, познания и самопознания;
- 3) подготовка к осуществлению осознанного выбора индивидуальной образовательной или профессиональной траектории.
- Большой вклад в достижение главных целей основного общего образования вносит изучение химии, которое призвано обеспечить решение следующих *целей*:
- 1) формирование системы химических знаний как компонента естественно-научной картины мира;
- 2) развитие личности обучающихся, формирование у них гуманистических отношений и экологически целесообразного поведения в быту и трудовой деятельности;
- 3) выработка понимания общественной потребности в развитии химии, а также формирование отношения к химии как к возможной области будущей практической деятельности;
- 4) формирование умения безопасного обращения с веществами, используемыми в повседневной жизни.

Основные задачи изучения химии в школе:

$\sqcup \sqcup \phi$ ормировать у обучающихся умения видеть и понимать ценность образования, зна-
чимость химического знания для каждого человека независимо от его профессиональной
деятельности;

□ формировать представления о химической составляющей естественнонаучной
картины мира; умения объяснять объекты и процессы окружающей действительности,
используя для этого химические знания;
$\square\square$ овладевать методами научного познания для объяснения химических явлений и
свойств веществ, оценки роли химии в развитии современных технологий и получении
новых материалов;
□ воспитывать убежденность в позитивной роли химии в жизни современного обще-
ства, необходимости грамотного отношения к своему здоровью и окружающей среде;
$\square\square$ применять полученные знаний для безопасного использования веществ и материалов
в быту, сельском хозяйстве и на производстве, решения практических задач в
повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и
окружающей среде;
□ развивать познавательные интересы, интеллектуальные и творческие способ-
ности учащихся в процессе изучения ими химической науки и ее вклада в современный
научно-технический прогресс;
$\Box\Box\phi$ ормировать важнейшие логических операций мышления (анализ, синтез, обоб-
щение, конкретизация, сравнение и др.) в процессе познания системы важнейших поня-
гий, законов и теорий о составе, строении и свойствах химических веществ;
□ □ овладевать ключевыми компетенциями (учебно-познавательными, информацион-
ными, ценностно-смысловыми, коммуникативными).

1.2. Реализация программы «Химия» на базе «Точки роста».

На базе центра «Точка роста» обеспечивается реализация образовательных программ естественно-научной и технологической направленностей, разработанных в соответствии с требованиями законодательства в сфере образования и с учётом рекомендаций Федерального оператора учебного предмета «Химия».

Образовательная программа позволяет интегрировать реализуемые подходы, структуру и содержание при организации обучения химии в 8—9 классах, выстроенном на базе любого из доступных учебно-методических комплексов (УМК).

Использование оборудования «Точка роста» при реализации данной ОП позволяет создать условия:

для расширения содержания школьного химического образования;

для повышения познавательной активности обучающихся в естественно-научной области; для развития личности ребёнка в процессе обучения химии, его способностей, формирования и удовлетворения социально значимых интересов и потребностей; для работы с одарёнными школьниками, организации их развития в различных областях образовательной, творческой деятельности.

Современные экспериментальные исследования по химии уже трудно представить без использования не только аналоговых, но и цифровых измерительных приборов.В Федеральном Государственном Образовательном Стандарте (ФГОС) прописано, что одним из универсальных учебных действий, приобретаемых учащимися, должно стать умение «проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов».

Учебный эксперимент по химии, проводимый на традиционном оборудовании, без применения цифровых лабораторий, не может позволить в полной мере решить все задачи в современной школе. Это связано с рядом причин:

традиционное школьное оборудование из-за ограничения технических возможностей не позволяет проводить многие количественные исследования;

длительность проведения химических исследований не всегда согласуется с длительностью учебных занятий;

возможность проведения многих исследований ограничивается требованиями техники безопасности и др.

Цифровая лаборатория полностью меняет методику и содержание экспериментальной деятельности и решает вышеперечисленные проблемы. Широкий спектр датчиков позволяет учащимся знакомиться с параметрами химического эксперимента не только на качественном, но и на количественном уровне. Цифровая лаборатория позволяет вести длительный эксперимент даже в отсутствие экспериментатора, а частота их измерений неподвластна человеческому восприятию.

В процессе формирования экспериментальных умений ученик обучается представлять информацию об исследовании в четырёх видах:

в вербальном: описывать эксперимент, создавать словесную модель эксперимента, фиксировать внимание на измеряемых величинах, терминологии;

в табличном: заполнять таблицы данных, лежащих в основе построения графиков (при этом у учащихся возникает первичное представление о масштабах величин);

графическом: строить графики по табличным данным, что даёт возможность перехода к выдвижению гипотез о характере зависимости между величинами (при этом учитель показывает преимущество в визуализации зависимостей между величинами, наглядность и многомерность); в виде математических уравнений: давать математическое описание взаимосвязи величин, математическое обобщение.

1.3. Нормативные документы для реализации программы.

Рабочая программа по химии для МБОУ СОШ № 4 составлена на основе следующих нормативных документов

1. Федеральный закон от 29.12.2012 № 273-ФЗ (ред.от 31.07.2020) «Об образовании в Российской Федерации» (с изм.и доп., вступ.в силу с 01.09.2020).— URL:

http://www.consultant.ru/document/cons doc LAW 140174 (дата обращения: 28.09.2020)

2. Паспорт национального проекта «Образование» (утв.президиумом Совета при Президенте РФ по стратегическому развитию и национальным проектам, протокол от 24.12.2018 № 16).— URL:

https://login.consultant.ru link ?req=doc&base=LAW&n=319308&demo=1 (дата обращения: 10.03.2021)

3.Государственная программа Российской Федерации «Развитие образования» (утверждена постановлением Правительства РФ от 26.12.2017 № 1642 (ред.от 22.02.2021) «Об утверждении государственной программы Российской Федерации «Развитие образования».— URL:

http://www.consultant.ru/document/cons_doc_LAW_286474/cf742885e783e08d9387d7364e34f26f87ec138f

(дата обращения: 10.03.2021)

- 4. Профессиональный стандарт «Педагог (педагогическая деятельность в дошкольном, начальном общем, основном общем, среднем общем образовании), (воспитатель, учитель)» (ред.от 16.06.2019 г.) (Приказ Министерства труда и социальной защиты РФ от 18 октября 2013г.№ 544н, с изменениями, внесёнными приказом Министерства труда и соцзащиты РФ от 25 декабря 2014 г.№ 1115н и от 5 августа 2016 г.№ 422н).— URL: // http://профстандартпедагога.рф (дата обращения: 10.03.2021)
- 5. Профессиональный стандарт «Педагог дополнительного образования детей и взрослых» (Приказ Министерства труда и социальной защиты РФ от 5 мая 2018 г.№ 298н «Об утверждении профессионального стандарта «Педагог дополнительного образования детей и взрослых»).— URL: //https://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/reestr-professionalnykh-standartov/index.php? ELEMENT_ID=48583

(дата обращения: 10.03.2021)

6. Федеральный государственный образовательный стандарт основного общего образования (утверждён приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г.№ 1897) (ред.21.12.2020).— URL: https://fgos.ru

(дата обращения: 10.03.2021)

7. Федеральный государственный образовательный стандарт среднего общего образования (утверждён приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г.№ 413) (ред.11.12.2020).— URL: https://fgos.ru

(дата обращения: 10.03.2021)

8. Методические рекомендации по созданию и функционированию детских технопарков «Кванториум» на базе общеобразовательных организаций (утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г.№ Р-4).— URL: http://www.consultant.ru/document/cons_doc_LAW_374695

(дата обращения: 10.03.2021)

9. Методические рекомендации по созданию и функционированию центров цифрового образования «ІТ-куб» (утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г.№ Р-5).— URL: http://www.consultant.ru/document/cons_doc_LAW_374572

(дата обращения: 10.03.2021)

10. Методические рекомендации по созданию и функционированию в общеобразовательных организациях, расположенных в сельской местности и малых городах, центров образования естественно-научной и технологической направленностей («Точка роста») (утверждены распоряжением Министерства просвещения Российской Федерации от 12 января 2021 г.№ Р-6).— URL: http://www.consultant.ru/document/cons_doc_LAW_374694/ (дата обращения: 10.03.2021)

4				
\boldsymbol{A}	m	ПK	же	•

A mak жe:
□ Закона «Об образовании в Российской Федерации» ;
□ Фундаментального ядра содержания общего образования ;
□ Федерального государственного образовательного стандарта основного общего образо-
вания;
□ Требований к результатам освоения основной образовательной программы основного

общего образования, представленных в федеральном государственном образовательном
стандарте общего образования второго поколения;
□ Примерной основной образовательной программы образовательного учреждения
□ Примерной программы по химии ;
□ Программы развития и формирования универсальных учебных действий для основного
общего образования.
В основу данной рабочей программы положена авторская программа О.С. Габриеляна,
А.В. Купцовой – «Программа основного общего образования по химии, 8-9 классы»
(Москва, Дрофа, 2016
1. 3.ОБЩАЯ ХАРАКТЕРИСТИКА ПРЕДМЕТА
Химия, как одна из основополагающих областей естествознания, является неотъемлемой
частью образования школьников. Школьный курс химии включает объем химических зна-
ний, необходимый для формирования в сознании школьников химической картины мира.
Химическое образование необходимо также для создания у школьника отчетливых пред-
ставлений о роли химии в решении экологических, сырьевых, энергетических, продоволь-
ственных, медицинских проблем человечества. Кроме того, определенный объем химиче-
ских знаний необходим как для повседневной жизни, так и для деятельности во всех обла-
стях науки, народного хозяйства, в том числе не связанных с химией непосредственно.
Изучая химию, учащиеся узнают о материальном единстве всех веществ окружающего
мира, обусловленности свойств веществ их составом и строением, познаваемости и
предсказуемости химических явлений. Поэтому каждый человек, живущий в мире
веществ, должен иметь основы фундаментальных знаний по химии (химическая
символика, химические понятия, факты, основные законы и теории), позволяющие
выработать представления о составе
веществ, их строении, превращениях, практическом использовании, а также об опасности,
которую они могут представлять.
Изучение свойств веществ и их превращений способствует развитию логического мыш-
ления, а практическая работа с веществами (лабораторные опыты) – трудолюбию,
аккуратности и собранности. На примере химии учащиеся получают представления о
методах познания, характерных для естественных наук - экспериментальном и
теоретическом.
Поэтому в рабочей программе по химии нашли отражение основные содержательные ли-
нии:
□ вещество — знания о составе и строении веществ, их важнейших физических и химиче-
ских свойствах, биологическом действии;
□ химическая реакция — знания об условиях, в которых проявляются химические
свойства ьвеществ, способах управления химическими процессами;
□ применение веществ — знания и опыт практической деятельности с веществами,
которые наиболее часто употребляются в повседневной жизни, широко используются в
промыш-
ленности, сельском хозяйстве, на транспорте;
\square язык химии — система важнейших понятий химии и терминов, в которых они описыва-
ются, номенклатура неорганических веществ, т. е. их названия (в том числе и тривиаль-
ные), химические формулы и уравнения, а также правила перевода информации с есте-
ственного языка на язык химии и обратно.

Поскольку основные содержательные линии школьного курса химии тесно переплетены, в программе содержание представлено не по линиям, а по разделам: «Основные понятия химии (уровень атомно-молекулярных представлений)», «Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение вещества», «Многообразие химических реакций», «Многообразие веществ».

Курс химии 8 класса изучается в два этапа.

□ Первый этап — химия в статике, на котором рассматриваются состав и строение атома и вещества. Его основу составляют сведения о химическом элементе и формах его существования — атомах, изотопах, ионах, простых веществах и их важнейших соединениях (оксидах и других бинарных соединениях, кислотах, основаниях и солях), строении вещества (типологии химических связей и видах кристаллических решеток). □ Второй этап — химия в динамике, на котором учащиеся знакомятся с химическими реакциями как функцией состава и строения участвующих в химических превращениях веществ и их классификации. Свойства кислот, оснований и солей сразу рассматриваются в свете теории электролитической диссоциации. Кроме этого, свойства кислот и солей характеризуются также в свете окислительно-восстановительных процессов. В курсе 9 класса вначале обобщаются знания учащихся по курсу 8 класса, апофеозом которого является Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Кроме того, обобщаются сведения о химических реакциях и их клас сификации — знания об условиях, в которых проявляются химические свойства веществ, и способах управления химическими процессами. Затем рассматриваются общие свойства металлов и неметаллов. Приводятся свойства щелочных и щелочноземельных металлов и галогенов (простых веществ и соединений), как наиболее ярких представителей этих классов элементов, и их сравнительная характеристика. В курсе подробно рассматриваются состав, строение, свойства, получение и применение отдельных, важных в хозяйственном отношении веществ, образованных элементами 2—3-го периодов.

1.4 МЕСТО ПРЕДМЕТА В УЧЕБНОМ ПЛАНЕ

Особенности содержания курса «Химия» являются главной причиной того, что в базисном учебном (образовательном) плане этот предмет появляется последним в ряду естественнонаучных дисциплин, поскольку для его освоения школьники должны обладать не только определенным запасом предварительных естественнонаучных знаний, но и достаточно хорошо развитым абстрактным мышлением.

Рабочая программа курса химии для основной школы разработана с учетом первоначальных представлений о мире веществ, полученных учащимися в начальной школе при изучении окружающего мира, и межпредметных связей с курсами физики (7 класс), биологии (5-7 классы), географии (6 класс) и математики.

В соответствии с базисным учебным планом на изучение химии в 8 и 9 классе отводится по 2 часа в неделю, 70 часов в год, при нормативной продолжительности учебного года в 35 учебные недели (34 недели в 9 классе). Таким образом, время, выделяемое рабочей программой на изучение химии в 8-9 классах, составляет 138 часов, из них 5 часов резервные (в 8 классе – 1 час, и в 9 классе – 4 часа).

Содержание изучаемого по программе материала состоит из двух частей:

□ первая – инвариантная часть, которая полностью включает в себя содержание примерной программе по химии (102 часа),

□ вторая часть — вариативная, она использована для увеличения числа часов на изучение инвариантной части (34 часа): рабочая программа более чем в два раза увеличивает время, отведенное примерной программой на изучение раздела «Многообразие в еществ» (курс химии 9 класса). Это объясняется необходимостью основательно отработать важнейшие теоретические положения курса химии основной школы на богатом фактологическом материале химии элементов и образованных ими веществ.

1.5 Описание материально-технической базы центра «Точка роста», используемого для реализации образовательных программ в рамках преподавания химии

Материально-техническая база центра «Точка роста» включает в себя современные и классические приборы.Последние прошли многолетнюю апробацию в школе и получили признание у учителей химии.К ним относятся: прибор для демонстрации зависимости скорости реакции от различных факторов, аппарат для проведения химических реакций, прибор для опытов с электрическим током, прибор для изучения состава воздуха и многие другие. Учитывая практический опыт применения данного оборудования на уроках химии, мы дадим лишь краткое описание приборов. Основной акцент сделаем на описании цифровых лабораторий и их возможностях.

Цифровая (компьютерная) лаборатория (**ЦЛ**), программно-аппаратный комплекс, датчиковая система — комплект учебного оборудования, включающий измерительный блок, интерфейс которого позволяет обеспечивать связь с персональным компьютером, и набор датчиков1, регистрирующих значения различных физических величин.

Дамчик температуры платиновый — простой и надёжный датчик, предназначен для измерения температуры в водных растворах и в газовых средах. Имеет различный диапазон измерений от -40 до +180 °C. Технические характеристики датчика указаны в инструкции по эксплуатации.

Датичик температуры термопарный предназначен для измерения температур до 900 °C.Используется при выполнении работ, связанных с измерением температур пламени, плавления и разложения веществ.

Датичик оптической плотности (колориметр) – предназначен для измерения оптической плотности окрашенных растворов (*puc. 1*). Используется при изучении тем «Растворы», «Скорость химических реакций», определении концентрации окрашенных ионов или соединений.

В комплект входят датчики с различной длиной волн полупроводниковых источников света: 465 и 525 нм.Объём кюветы составляет 4 мл, длина оптического пути — 10 мм.

Датичик рН предназначен для измерения водородного показателя (рН).В настоящее время в школу поступают комбинированные датчики, совмещающие в себе стеклянный электрод с электродом сравнения, что делает работу по измерению водородного показателя более комфортной. Диапазон измерений рН от 0—14. Используется для измерения водородного показателя водных растворов в различных исследованиях объектов окружающей среды.

Датичик электропроводности предназначен для измерения удельной электропроводности жидкостей, в том числе и водных растворов веществ. Применяется

при изучении теории электролитической диссоциации, характеристик водных растворов.

Датичик нитратов предназначен для количественного определения нитратов в различных объектах окружающей среды: воде, овощах, фруктах, колбасных изделиях и т.д.

Микроскоп цифровой предназначен для изучения формы кристаллов и наблюдения за ростом кристаллов.

Аппарат для проведения химических реакций (АПХР) предназначен для получения и демонстрации свойств токсичных паров и газов. Эти вещества получаются в колбереакторе, и при нагревании (или без нагревания) газообразные вещества проходят через поглотительные ёмкости (насадки) с растворами реагентов, вступают с ними в реакцию (рис. 3). Избыток газа поглощается жидкими и твёрдыми реагентами, а также активированным углём. Аппарат чаще всего используют для получения и демонстрации свойств хлора, сероводорода.

Прибор для демонстрации зависимости скорости химических реакций от различных факторов используют при изучении темы «Скорость химической реакции» и теплового эффекта химических реакций. Прибор даёт возможность экспериментально исследовать влияние на скорость химических реакций следующих факторов: природы реагирующих веществ, концентрации реагирующих веществ, площади границы раздела фаз в гетерогенных системах (поверхности соприкосновения между реагирующими веществами), температуры, катализатора, ингибитора.

Датичик хлорид-ионов используется для количественного определения содержания ионов хлора в водных растворах, почве, продуктах питания. К датчику подключается ионоселективный электрод (ИСЭ) (рабочий электрод), потенциал которого зависит от концентрации определяемого иона, в данном случае от концентрации анионов Cl—.Потенциал ИСЭ определяют относительно электрода сравнения, как правило, хлорсеребряного.

Прибор для демонстрации зависимости скорости химических реакций от различных факторов используют при изучении темы «Скорость химической реакции» и теплового эффекта химических реакций. Прибор даёт возможность экспериментально исследовать влияние на скорость химических реакций следующих факторов: природы реагирующих веществ, концентрации реагирующих веществ, площади границы раздела фаз в гетерогенных системах (поверхности соприкосновения между реагирующими веществами), температуры, катализатора, ингибитора.

Пипетка-дозатор — приспособление, используемое в лаборатории для отмеривания определённого объёма жидкости. Пипетки выпускаются переменного и постоянного объёма. В комплекты оборудования для медицинских классов входят удобные пипетки-дозаторы одноканальные, позволяющие настроить необходимый объём отбираемой жидкости в трёх различных диапазонах (рис. 6). Использование современных технологий и цветовой кодировки

диапазона дозирования даёт возможность качественно, точно, безопасно выполнять пипетирование. Пипетки имеют сменные пластиковые наконечники.

Баня комбинированная предназначена для нагрева стеклянных и фарфоровых сосудов, когда требуется создать вокруг нагреваемого сосуда равномерное температурное поле, избежать использования открытого пламени и раскалённой электрической спирали (*puc.* 7).Корпус комбинированной бани сделан из алюминия.Жидкостная часть комбинированной бани закрывается кольцами различного диаметра

Прибор для получения газов используется для получения небольших количеств газов: водорода, кислорода (из пероксида водорода), углекислого газа.

2.РЕЗУЛЬТАТЫ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ

При изучении химии в основной школе обеспечивается достижение личностных, метапредметных и предметных результатов.

Личностные:

- 1. В ценностно-ориентационной сфере:
- ✓ воспитание чувства гордости за российскую химическую науку, гуманизма, позитивного отношения к труду, целеустремленности;
- ✓ формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- ✓ формирование экологического мышления: умения оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды гаранта жизни и благополучия людей на Земле.
- 2. В трудовой сфере:
- ✓ воспитание готовности к осознанному выбору дальнейшей образовательной траектории.
- 3. В познавательной (когнитивной, интеллектуальной) сфере:
- ✓ формирование умения управлять своей познавательной деятельностью;
- ✓ развитие собственного целостного мировоззрения, потребности и готовности к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;
- ✓ формирование основ экологической культуры, соответствующей современному уровню

экологического мышления, развитие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях.

Метапредметные:

- ✓ использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- ✓ использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинноследственных связей, поиск аналогов;
- ✓ умение генерировать идеи и определять средства, необходимые для их реализации;
- ✓ умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;

✓ использование различных источников для получения химической информации.

Предметные:

- 1. В познавательной сфере:
- ✓ знание определений изученных понятий: умение описывать демонстрационные и самостоятельно проведенные химические эксперименты, используя для этого родной язык и язык химии;
- ✓ умение различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции, описывать их;
- ✓ умение классифицировать изученные объекты и явления;
- ✓ способность делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
- ✓ умение структурировать изученный материал и химическую информацию, полученную из других источников;
- ✓ умение моделировать строение атомов элементов 1-3 периодов, строение простых молекул;
- 2. В ценностно-ориентационной сфере:
- ✓ умение анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;
- 3. В трудовой сфере:
- ✓ формирование навыков проводить химический эксперимент;
- 4. В сфере безопасности жизнедеятельности:
- ✓ умение различать опасные и безопасные вещества;
- ✓ умение оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Описание ценностных ориентиров содержания учебного предмета

Учебный предмет «Химия», в содержании которого главными компонентами являются научные знания и научные методы познания, позволяет пробуждать у учащихся эмоционально-ценностное отношение к изучаемому материалу. В результате учебного процесса создаются условия для формирования системы ценностей. Познавательная функция учебного предмета «Химия» заключается в способности его содержания развивать ценностные качества у учащихся.

Познавательные ценности:

отношение к:

- ✓ химическим знаниям как одному из компонентов культуры человека наряду с другими естественнонаучными знаниями;
- ✓ окружающему миру как миру веществ и происходящих с ними явлений;
- \checkmark познавательной деятельности (как теоретической, так и экспериментальной) как источнику знаний;

понимание:

- ✓ объективности и достоверности знаний о веществах и происходящих с ними явлениях:
- ✓ сложности и бесконечности процесса познания (на примере истории химических открытий);
- ✓ действия законов природы и необходимости их учета во всех сферах деятельности человека;
- ✓ значения химических знаний для решения глобальных проблем человечества (энергетической, сырьевой, продовольственной, здоровья и долголетия человека, технологических аварий, глобальной экологии и др.).

Ценности труда и быта:

- ✓ отношение к трудовой деятельности как естественной физической и интеллектуальной потребности, труду как творческой деятельности, позволяющей применять знания на практике;
- ✓ сохранение и поддержание собственного здоровья и здоровья окружающих, в том числе организация питания с учетом состава и энергетической ценности пищи;
- ✓ соблюдение правил безопасного использования веществ (лекарственных препаратов, средств бытовой химии, пестицидов, горюче-смазочных материалов и др.) в повседневной жизни:
- ✓ осознание достижения личного успеха в трудовой деятельности за счет собственной компетентности в соответствии с социальными стандартами и последующим социальным одобрением достижений науки химии и химического производства для развития современного общества.

Нравственные ценности:

- ✓ отношение к себе (осознание собственного достоинства, чувство общественного долга, дисциплинированность, честность и правдивость, простота и скромность, нетерпимость к несправедливости, признание необходимости самосовершенствования);
- ✓ отношение к другим людям (гуманизм, взаимное уважение между людьми, товарищеская взаимопомощь и требовательность, коллективизм, забота о других людях);
- ✓ отношение к природе (бережное отношение к ее богатству, нетерпимость к нарушениям экологических норм и требований, экологически грамотное отношение к сохранению гидросферы, атмосферы, почвы, биосферы, человеческого организма; оценка действия вопреки законам природы, приводящего к возникновению глобальных проблем);
- ✓ понимание необходимости уважительного отношения к достижениям отечественной науки, исследовательской деятельности российских ученых-химиков (патриотические чувства).

Коммуникативные ценности:

- ✓ отношение к нормам языка (естественного и химического) в различных источниках информации (литература, СМИ, Интернет и др.);
- ✓ понимание необходимости принятия различных средств и приемов коммуникации;
- ✓ понимание необходимости получения информации из различных источников, еè критической оценки, полного или краткого (в зависимости от цели) изложения;
- ✓ понимание важности ведения диалога для выявления разных точек зрения на рассматриваемую информацию; выражения личных оценок и суждений; принятия вывода, который формируется в процессе коммуникации.

Эстетические ценности:

- ✓ позитивное чувственно-ценностное отношение к: к окружающему миру (красота, совершенство и гармония окружающей природы и космоса в целом); природному миру веществ и их превращений); выполнению учебных задач как к процессу, доставляющему эстетическое удовольствие (красивое, изящное решение или доказательство, простота, в основе которой лежит гармония);
- ✓ понимание необходимости изображения истины, научных знаний в чувственной форме (например, в произведениях искусства, посвященных научным открытиям, ученым, веществам и их превращениям).

ФОРМЫ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Основной формой организации учебного процесса является урок в рамках классноурочной системы. В качестве дополнительных форм используется система консультационной поддержки, дополнительных индивидуальных занятий, самостоятельная работа учащихся с использованием современных информационных технологий, внеурочная деятельность по предмету.

Общие формы организации обучения: индивидуальная, парная, групповая, коллектив-

ная, фронтальная, которые реализуются на уроке, в проектно-исследовательской работе, на семинарах, конференциях, экскурсиях, при проведении лабораторных опытов и практических работ, на занятиях элективных и спецкурсов и т.д.

Типы уроков: уроки «открытия» нового знания; уроки отработки умений и рефлексии; уроки общеметодологической направленности; уроки развивающего контроля. Формы организации учебно-исследовательской деятельности на учебных занятиях: урок-исследование, урок-лаборатория, урок-творческий отчет, урок изобретательства, урок -защита исследовательских проектов, урок-экспертиза, урок «Патент на открытие», урок открытых мыслей, учебный эксперимент, домашнее задание исследовательского характера.

ТЕХНОЛОГИИ ОБУЧЕНИЯ

Формированию необходимых ключевых компетенций способствует использование современных образовательных технологий или элементов этих технологий:

- ✓ технологии проблемного обучения;
- ✓ технология обучения на примере конкретных ситуаций;
- ✓ технология развивающего обучения;
- ✓ технология РКМЧП (развития критического мышления через чтение и письмо);
- ✓ технология проектной и исследовательской деятельности учащихся;
- ✓ ИКТ-технологии;
- ✓ ДМТ-технология (дидактическая многомерная технология);
- ✓ педагогика сотрудничества;
- ✓ технологии дискуссий и диалоговые технологии;
- ✓ технология развивающих исследовательских задач (ТРИЗ);
- ✓ здоровьесберегающие технологии;
- ✓ технологии индивидуального обучения;
- ✓ технология группового обучения;
- ✓ технологии интегрированного обучения;
- ✓ технология разноуровневого обучения;
- ✓ технология игрового обучения
- ✓ традиционные образовательные технологии

и другие, которые педагог считает целесообразным применять в своей работе.

МЕХАНИЗМЫ ФОРМИРОВАНИЯ УНИВЕРСАЛЬНЫХ УЧЕБНЫХ ДЕЙСТВИЙ Универсальные учебные действия формируются в рамках учебных предметов, в том числе и предмета ХИМИЯ. Механизмы их формирования заложены в четырех метапредмет-

ных программах, включенных в программу образовательного учреждения:

- 1. Программа «Формирование универсальных учебных действий»;
- 2. Программа «Формирование ИКТ-компетентности обучающихся»;
- 3. Программа «Основы учебно-исследовательской и проектной деятельности»;
- 4. Программы «Основы смыслового чтения и работа с текстом»

Условия и средства формирования УУД: педагогическое общение, учебное сотрудничество, совместная деятельность, разновозрастное сотрудничество, проектная деятельность

как форма сотрудничества, дискуссии, тренинги, общий прием доказательства, рефлексия. ИЗМЕНЕНИЯ, ВНЕСЕННЫЕ В АВТОРСКУЮ ПРОГРАММУ

В целом содержание данной рабочей программы соответствует авторской программе. Основное отличие еè от авторской состоит в следующем: в программе О.С. Габриеляна практические работы сгруппированы в блоки — химические практикумы, которые проводятся после изучения нескольких разделов, а в рабочей программе эти же практические работы даются после изучения теоретического материала по данной теме. Это изменение позволяет:

✓ лучше закрепить теоретический материал на практике;

- ✓ отработать практические умения и навыки в непосредственной связи с теорией по теме;
- ✓ экономить время на исключении дополнительного повторения теории перед практической работой.

Данное изменение не затронуло количество и содержание практических работ, данных в авторской программе, но привело к изменению числа тем и часов, отводимых на изучение соответствующих тем,

Раздел 2. СОДЕРЖАНИЕ ПРОГРАММЫ

8 класс (2 ч в неделю, всего 70 ч, из них 3ч — резервное время)

ВВЕДЕНИЕ (6 часов)

Предмет химии. Методы познания в химии: наблюдение, эксперимент, моделирование. Источники химической информации, ее получение, анализ и представление его результатов.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Роль отечественных ученых в становлении химической науки — работы М. В. Ломоносова, А. М. Бутлерова, Д.

И. Менделеева.

Химическая символика. Знаки химических элементов и про исхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Проведение расчетов массовой доли химического элемента в веществе на осно-

ве его формулы.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы. Периодическая система как справочное пособие

для получения сведений о химических элементах.

Демонстрации. 1. Модели различных простых и сложных веществ. 2. Коллекция стеклянной химической посуды. 3. Коллекция материалов и из делий из них на основе алюминия. 4. Взаимодействие мрамора с кислотой и помутнение известковой воды.

Лабораторные опыты. 1. Сравнение свойств твердых кристаллических веществ и растворов. 2. Сравнение скорости испарения воды, одеколона и этилового спирта с фильтровальной бумаги.

Практические работы. 1. Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами.

Приборы

Датчик температуры (термопарный), спиртовка, плитка электрическая, термометр ,датчик электропроводности, цифровой микроскоп, весы электронные,

.

Предметные результаты обучения

Учащийся должен *знать:* предметы изучения естественнонаучных дисциплин, в том чи сле химии; химические символы: A1, Ag C, Ca, Cl, Cu, Fe, H, K, N, Mg, Na, O, P, S, Si, Zn, их названия и произношение.

Учащийся должен уметь:

- ✓ использовать при характеристике веществ понятия: «атом», «молекула», «химический элемент», «химический знак, или символ», «вещество», «простое вещество», «сложное вещество», «свойства веществ», «химические явления», «физические явления», «коэффициенты», «индексы», «относительная атомная масса», «относительная молекулярная масса», «массовая доля элемента»;
- ✓ обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- \checkmark выполнять простейшие приемы работы с лабораторным обо рудованием: лабораторным

штативом; спиртовкой;

- ✓ классифицировать вещества по составу на простые и сложные;
- ✓ различать: тела и вещества; химический элемент и простое вещество;
- ✓ описывать: формы существования химических элементов (свободные атомы, простые вещества, сложные вещества); табличную форму Периодической системы химических элементов; положение элемента в таблице Д. И, Менделеева, используя по нятия «период», «группа», «главная подгруппа», «побочная подгруппа»; свойства веществ (твердых, жидких, газообразных);
- ✓ объяснять сущность химических явлений (с точки зрения атомно-молекулярного учения) и их принципиальное отличие от физических явлений;
- ✓ характеризовать: основные методы изучения естественных дисциплин (наблюдение, эксперимент, моделирование); вещество по его химической формуле согласно плану: качественный состав, тип вещества (простое или сложное), количественный состав, относительная молекулярная масса, соотношение масс элементов в веществе, массовые доли элементов в веществе (для сложных веществ); роль химии (положительную и отрицательную) в жизни человека, аргументировать свое отношение к этой проблеме;
- ✓ вычислять относительную молекулярную массу вещества и массовую долю химического элемента в соединениях;
- ✓ проводить наблюдения свойств веществ и явлений, происходящих с веществами;
- ✓ соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов.

Метапредметные результаты обучения

Учащийся должен уметь:

- ✓ определять проблемы, т. е. устанавливать несоответствие между желаемым и действительным;
- ✓ составлять сложный план текста;
- ✓ владеть таким видом изложения текста, как повествование;
- ✓ под руководством учителя проводить непосредственное наблюдение;
- ✓ под руководством учителя оформлять отчет, включающий описание наблюдения, его результатов, выводов;
- ✓ использовать такой вид мысленного (идеального) моделиро вания, как знаковое моделирование (на примере знаков химических элементов, химических формул);
- ✓ использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделирования атомов и молекул);
- ✓ получать химическую информацию из различных источников;

- ✓ определять объект и аспект анализа и синтеза;
- ✓ определять компоненты объекта в соответствии с аспектом анализа и синтеза;
- ✓ осуществлять качественное и количественное описание компонентов объекта;
- ✓ определять отношения объекта с другими объектами;
- ✓ определять существенные признаки объекта.

ТЕМА 1. АТОМЫ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ (10 часов)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны, нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома — образование новых химических элементов. Изменение числа нейтронов в ядре атома — образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных уровней атомов химических элементов малых периодов. Понятие о завершенном электронном уровне.

Периодическая система химических элементов Д. И. Менделеева и строение атомов, физический смысл порядкового номера элемента, номера группы, номера периода. Изменение числа электронов на внешнем электронном уровне атома химического элемента — образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметалли ческих свойств в периодах и группах. Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи. Взаимодействие атомов элементов-неметаллов между собой — образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов неметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Ковалентная полярная связь. Понятие о валентности как свойстве атомов образовывать ковалентные химические связи. Составление формул бинарных соединений по валентности. Нахождение валентности по формуле бинарного соединения.

Взаимодействие атомов металлов между собой — образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева (различные формы).

Лабораторные опыты. 3. Моделирование принципа действия сканирующего микроскопа. 4. Изготовление моделей молекул бинарных соединений. 5. Изготовление модели, иллюстрирующей свойства металлической связи.

Предметные результаты обучения

Учащийся должен уметь:

- ✓ использовать при характеристике атомов понятия: «протон», «нейтрон», «электрон», «химический элемент», «массовое число», «изотоп», «электронный слой», «энергетический уровень», «элементы-металлы», «элементы-неметаллы»; при характеристике веществ понятия «ионная связь», «ионы», «ковалентная неполярная связь», «ковалентная полярная связь», «электроотрицательность», «валентность», «металлическая связь»;
- ✓ описывать состав и строение атомов элементов с порядковыми номерами 1—20 в Периодической системе химических элементов Д. И. Менделеева;
- ✓ составлять схемы распределения электронов по электронным слоям в электронной оболочке атомов; схемы образования разных типов химической связи (ионной, ковалентной, металлической);
- ✓ объяснять закономерности изменения свойств химических элементов (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электрон-

ных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства) в периодах и группах (главных подгруппах) Периодической системы химических элементов Д. И. Менделее ва с точки зрения теории строения атома;

✓ сравнивать свойства атомов химических элементов, находящихся в одном периоде или

главной подгруппе Периодической системы химических элементов Д. И. Менделеева (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства);

- ✓ давать характеристику химических элементов по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение эле ктронов по электронным слоям);
- ✓ определять тип химической связи по формуле вещества;
- ✓ приводить примеры веществ с разными типами химической связи;
- ✓ характеризовать механизмы образования ковалентной связи (обменный), ионной связи, металлической связи;
- ✓ устанавливать причинно-следственные связи: состав вещества тип химической связи;
- ✓ составлять формулы бинарных соединений по валентности;
- ✓ находить валентность элементов по формуле бинарного соединения.

Метапредметные результаты обучения

Учащийся должен уметь:

- ✓ формулировать гипотезу по решению проблем;
- ✓ составлять план выполнения учебной задачи, решения проблем творческого и поискового характера, выполнения проекта совместно с учителем;
- ✓ составлять тезисы текста;
- ✓ владеть таким видом изложения текста, как описание;
- ✓ использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере составления схем образования химической связи);
- ✓ использовать такой вид материального (предметного) моделирования, как аналоговое моделирование;
- ✓ использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделей строения атомов);
- ✓ определять объекты сравнения и аспект сравнения объектов;
- ✓ выполнять неполное однолинейное сравнение;
- ✓ выполнять неполное комплексное сравнение;
- ✓ выполнять полное однолинейное сравнение.

ТЕМА 2. ПРОСТЫЕ ВЕЩЕСТВА (7 часов)

Положение металлов и неметаллов в Периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы (железо, алюминий, кальций, магний, натрий, калий). Общие физические свойства металлов. Важн ейшие простые вещества-неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Молекулы простых веществ-неметаллов — водорода, кислорода, азота, галогенов. Относительная молекулярная масса.

Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора, олова. Металлические и неметаллические свойства простых веществ. Относительность этого понятия. Число Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы измерения количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломоляр-

ный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «число Авогадро».

Демонстрации. Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы с количеством вещества 1 моль. Молярный объем газообразных веществ.

Лабораторные опыты. 6. Ознакомление с коллекцией металлов. 7. Ознакомление с коллекцией неметаллов.

Предметные результаты обучения

Учащийся должен уметь:

- ✓ использовать при характеристике веществ понятия: «металлы», «пластичность», «теплопроводность», «электропроводность», «неметаллы», «аллотропия», «аллотропные видоизменения или модификации»;
- ✓ описывать положение элементов-металлов и элементов-неметаллов в Периодической системе химических элементов Д. И. Менделеева;
- ✓ классифицировать простые вещества на металлы и неметаллы, элементы;
- ✓ определять принадлежность неорганических веществ к одному из изученных классов

металлы и неметаллы;

- ✓ доказывать относительность деления простых веществ на металлы и неметаллы;
- ✓ характеризовать общие физические свойства металлов;
- ✓ устанавливать причинно-следственные связи между строением атома и химической связью в простых веществах металлах и неметаллах;
- ✓ объяснять многообразие простых веществ таким фактором, как аллотропия; описывать

свойства веществ (на примерах простых веществ — металлов и неметаллов);

- ✓ соблюдать правила техники безопасности при проведении наблюдений и лаборато рных опытов;
- ✓ использовать при решении расчетных задач понятия: «коли чество вещества», «моль», «постоянная Авогадро», «молярная масса», «молярный объем газов», «нормальные условия»;
- ✓ проводить расчеты с использованием понятий: «количество вещества», «молярная мас-

са», «молярный объем газов», «постоянная Авогадро».

Метапредметные результаты обучения

Учащийся должен уметь:

- ✓ составлять конспект текста;
- ✓ самостоятельно использовать непосредственное наблюдение;
- ✓ самостоятельно оформлять отчет, включающий описание наблюдения, его результатов, выводов;
- ✓ выполнять полное комплексное сравнение; выполнять сравнение по аналогии.

ТЕМА 3. СОЕДИНЕНИЯ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ (14 часов)

Степень окисления. Сравнение степени окисления и валентности. Определение степени окисления элементов в бинарных соединениях. Составление формул бинарных соединений, общий способ их названий.

Бинарные соединения металлов и неметаллов: оксиды, хлориды, сульфиды и пр. Составление их формул.

Бинарные соединения неметаллов: оксиды, летучие водородные соединения, их состав и названия. Представители оксидов: вода, углекислый газ, негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие об индикаторах и качественных реакциях.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная, азотная. Понятие о шкале кислотности (шкала рН). Изменение окраски индик аторов.

Соли как производные кислот и оснований, их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция. Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток. Зависимость свойств веществ от типов кристаллических решеток.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Кислотно-щелочные индикаторы, изменение их окраски в различных средах. Универсальный индикатор и из менение его окраски в различных средах. Шкала рН.

Лабораторные опыты. 8. Ознакомление с коллекцией оксидов. 9. Ознакомление со свойствами аммиака. 10. Качественная реакция на углекислый газ. 11. Определение рН растворов кислоты, щелочи и воды. 12. Определение рН лимонного и яблочного соков на срезе плодов. 13. Ознакомление с коллекцией солей. 14. Ознакомление с коллекцией веществ с разным типом кристаллической решетки. Изготовление моделей кристаллических решеток. 15. Ознакомление с образцом горной породы.

Практические работы. 2. Наблюдения за изменениями, происходящими с горящей свечой, и их описание (домашний эксперимент). 3. Приготовление раствора сахара и расчет его массовой доли в растворе.

Прибор для опытов с электрическим током , Прибор для определения состава воздуха

Предметные результаты обучения

Учащийся должен уметь:

- ✓ использовать при характеристике веществ понятия: «степень окисления», «валентность», «оксиды», «основания», «щелочи», «качественная реакция», «индикатор», «кислоты», «кислородсодержащие кислоты», «бескислородные кислоты», «кислотная среда», «щелочная среда», «нейтральная среда», «шкала рН», «соли», «аморфные вещества», «кристаллические вещества», «кристаллическая решетка», «ионная кристаллическая решетка», «молекулярная кристаллическая решетка», «металлическая кристаллическая решетка», «смеси»;
- ✓ классифицировать сложные неорганические вещества по со ставу на оксиды, основания, кислоты и соли; основания, кислоты и соли по растворимости в воде; кислоты по основности и содержанию кислорода;
- ✓ определять принадлежность неорганических веществ к одному из изученных классов (оксиды, летучие водородные соединения, основания, кислоты, соли) по формуле;
- ✓ описывать свойства отдельных представителей оксидов (на примере воды, углекислого

газа, негашеной извести), летучих водородных соединений (на примере хлороводорода и аммиака), оснований (на примере гидроксидов натрия, калия и кальция), кислот (на примере серной кислоты) и солей (на примере хлорида натрия, карбоната кальция, фосфата кальция);

- ✓ определять валентность и степень окисления элементов в веществах;
- ✓ составлять формулы оксидов, оснований, кислот и солей по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- ✓ составлять названия оксидов, оснований, кислот и солей;

- ✓ сравнивать валентность и степень окисления; оксиды, основания, кислоты и соли по составу;
- ✓ использовать таблицу растворимости для определения растворимости веществ;
- ✓ устанавливать генетическую связь между оксидом и гидроксидом и наоборот; причи
 н-

но-следственные связи между строением атома, химической связью и типом кристаллической решетки химических соединений;

- ✓ характеризовать атомные, молекулярные, ионные металлические кристаллические решетки; среду раствора с помощью шкалы рН;
- ✓ приводить примеры веществ с разными типами кристаллической решетки;
- ✓ проводить наблюдения за свойствами веществ и явлениями, происходящими с веществами:
- ✓ соблюдать правила техники безопасности при проведении наблюдений и опытов;
- ✓ исследовать среду раствора с помощью индикаторов;
- ✓ экспериментально различать кислоты и щелочи, пользуясь индикаторами;
- ✓ использовать при решении расчетных задач понятия «массо вая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества»:
- ✓ обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;
- ✓ описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии:
- ✓ делать выводы по результатам проведенного эксперимента;
- ✓ готовить растворы с определенной массовой долей раство ренного вещества;
- ✓ приготовить раствор и рассчитать массовую долю растворенного в нем вещества.

Метапредметные результаты обучения

Учащийся должен уметь:

- ✓ составлять на основе текста таблицы, в том числе с применением средств ИКТ;
- ✓ под руководством учителя проводить опосредованное наблюдение;
- ✓ под руководством учителя оформлять отчет, включающий описание эксперимента, его результатов, выводов;
- ✓ осуществлять индуктивное обобщение (от единичного достоверного к общему вероятностному), т. е. определять общие существенные признаки двух и более объектов и фиксировать их в форме понятия или суждения;
- ✓ осуществлять дедуктивное обобщение (подведение единичного достоверного под общее достоверное), т. е. актуализировать понятие или суждение, и отождествлять с ним соответствующие существенные признаки одного или более объектов;
- ✓ определять аспект классификации;
- ✓ осуществлять классификацию;
- ✓ знать и использовать различные формы представления классификации.

ТЕМА 4. ИЗМЕНЕНИЯ, ПРОИСХОДЯЩИЕ С ВЕЩЕСТВАМИ (11 часов).

Понятие явлений, связанных с изменениями, происходящими с веществом.

Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, — физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, фильтрование и центрифуги рование. Явления, связанные с изменением состава вещества, — химические реакции. Признаки и условия протекания химических реакций. Выделение теплоты и света — реакции горения. Понятие об экзо- и эндотермических реакциях.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества, массы или объема продукта реакции по количеству, массе или объему исходного вещества. Рас-

четы с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Представление о скорости химических реакций. Катализаторы. Ферменты. Реакции соединения. Каталитические и некаталитические реакции, обратимые и необратимые реакции. Реакции замещения. Ряд активности металлов, его использование для прогнозирования возможности протекания реакций между металлами и кислотами, реакций вытеснения одних металлов из растворов их солей другими металлами. Реакции обмена. Реакции нейтрализации. Условия протекания реак ций обмена в растворах до конца.

Типы химических реакций на примере свойств воды. Реакция разложения — электролиз воды. Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Условие взаимодействия оксидов металлов и неметаллов с водой. Понятие «гидроксиды». Реакции замещения — взаимодействие воды с металлами. Реакции обмена — гидролиз веществ.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка йода или бензойной кислоты; в) растворение окрашенных солей; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) разложение пероксида водорода с помощью диоксида марганца и каталазы картофеля или моркови; з) взаимодействие разбавленных кислот с металлами. Лабораторные опыты. 16. Прокаливание меди в пламени спиртовки. 17. Замещение меди в растворе хлорида меди (II) железом.

Практические работы. 4. Анализ почвы и воды (домашний эксперимент). 5. Признаки химических реакций.

Датчик pH, дозатор объёма жидкости, бюретка, датчик температуры платиновый, датчик давления, магнитная мешалка

Предметные результаты обучения

Учащийся должен уметь:

- ✓ использовать при характеристике веществ понятия: «дистилляция», «перегонка», «кристаллизация», «выпаривание», «фильтрование», «возгонка, или сублимация», «отстаивание», «центрифугирование», «химическая реакция», «химическое уравнение», «реакции соединения», «реакции разложения», «реакции обмена», «реакции замещения», «реакции нейтрализации», «экзотермические реакции», «эндотермические реакции», «реакции горения», «катализаторы», «ферменты», «обратимые реакции», «необратимые реакции», «каталитические реакции», «ряд активности металлов», «гидролиз»;
- ✓ устанавливать причинно-следственные связи между физическими свойствами веществ и способом разделения смесей;
- ✓ объяснять закон сохранения массы веществ с точки зрения атомно-молекулярного учения;
- ✓ составлять уравнения химических реакций на основе закона сохранения массы веществ;
- ✓ описывать реакции с помощью естественного (русского или родного) языка и языка химии:
- ✓ классифицировать химические реакции по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; направлению протекания реакции; участию ката-

лизатора:

✓ использовать De1090 таблицу растворимости для определения возможности протекания реакций обмена; электрохимический ряд напряжений (активности) металлов для опреде-

ления возможности протекания реакций между металлами и водными растворами кислот и солей;

- ✓ наблюдать и описывать признаки и условия течения химических реакций, делать выводы на основании анализа наблюдений за экспериментом;
- ✓ проводить расчеты по химическим уравнениям на нахождение количества, массы или объема продукта реакции по количеству, массе или объему исходного вещества; с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Метапредметные результаты обучения

Учащийся должен уметь:

- ✓ составлять на основе текста схемы, в том числе с применением средств ИКТ;
- \checkmark самостоятельно оформлять отчет, включающий описание эксперимента, его результатов,

выводов;

- ✓ использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений химических реакций);
- ✓ различать объем и содержание понятий;
- ✓ различать родовое и видовое понятия;
- ✓ осуществлять родовидовое определение понятий.

ТЕМА 5. РАСТВОРЕНИЕ. РАСТВОРЫ. СВОЙСТВА РАСТВОРОВ ЭЛЕКТРОЛИТОВ (18 часов)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциаций электролитов с различным характером связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Реакции обмена, идущие до конца.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов.

Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с солями. Использование таблицы растворимости для характеристики химических свойств оснований. Взаимодействие щелочей с оксидами неметаллов.

Соли, их диссоциация и свойства в свете теории электролитической диссоциации. Взаимодействие солей с металлами, особенности этих реакций. Взаимодействие солей с солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и свойствах.

Генетические ряды металла и неметалла. Генетическая связь между классами неорг анических вешеств.

Окислительно-восстановительные реакции.

Определение степеней окисления для элементов, образующих вещества разных классов. Реакции ионного обмена и окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ — металлов и неметаллов, кислот и солей в свете окислительно-восстановительных реакций.

Демонстрации. Испытание веществ и их растворов на электропроводность. Зависимость электропроводности уксусной кислоты от концентрации. Движение окрашенных ионов в электрическом поле. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты. 18. Взаимодействие растворов хлорида натрия и нитрата серебра. 19. Получение нерастворимого гидроксида и взаимодействие его с кислотами. 20. Вза имодействие кислот с основаниями. 21. Взаимодействие кислот с оксидами металлов. 22. Взаимодействие кислот с металлами. 23. Взаимодействие кислот с солями. 24. Взаимодействие щелочей с кислотами. 25. Взаимодействие щелочей с окс идами неметаллов. 26. Взаимодействие шелочей с солями. 27. Получение и свойства нерастворимых оснований. 28. Взаимодействие основных оксидов с кислотами. 29. Взаимодействие основных оксидов с водой. 30. Взаимодействие кислотных оксидов со щелочами. 31. Взаимодействие кислотных оксидов с водой. 32. Взаимодействие солей с кислотами. 33. Взаимодействие солей с целочами. 34. Взаимодействие солей с солями. 35.

Взаимодействие растворов солей с

металлами.

Практические работы. 6. Решение экспериментальных задач.

Датчик pH, дозатор объёма жидкости, бюретка, датчик температуры платиновый, датчик давления, магнитная мешалка, прибор для работы с электрическим током, АПХР

Предметные результаты обучения

Учащийся должен уметь:

- ✓ использовать при характеристике превращений веществ понятия: «раствор», «электролитическая диссоциация», «электролиты», «неэлектролиты», «степень диссоциации», «сильные электролиты», «слабые электролиты», «катионы», «анионы», «кислоты», «основания», «соли», «ионные реакции», «несолеобразующие оксиды», «солеобразующие оксиды», «основные оксиды», «кислотные оксиды», «средние соли», «кислые соли», «основные соли», «генетический ряд», «окислительно-восстановительные реакции», «окислитель», «восстановитель», «окисление», «восстановление»;
- ✓ описывать растворение как физико-химический процесс;
- ✓ иллюстрировать примерами основные положения теории электролитической диссоциации; генетическую взаимосвязь между веществами (простое вещество оксид гидроксид соль);
- ✓ характеризовать общие химические свойства кислотных и основных оксидов, кислот, оснований и солей с позиций теории электролитической диссоциации; сущность электролитической диссоциации веществ с ковалентной полярной и ионной химической связью; сущность окислительно-восстановительных реакций;
- ✓ приводить примеры реакций, подтверждающих химические свойства кислотных и основных оксидов, кислот, оснований и солей; существование взаимосвязи между основными классами неорганических веществ;
- ✓ классифицировать химические реакции по «изменению степеней окисления элементов,

образующих реагирующие вещества»;

- ✓ составлять уравнения электролитической диссоциации кислот, оснований и солей; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов; уравнения окислительно-восстановительных реакций, используя метод электронного баланса; уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- ✓ определять окислитель и восстановитель, окисление и восстановление в окислительно-восстановительных реакциях;
- ✓ устанавливать причинно-следственные связи: класс вещества химические свойства вещества; наблюдать и описывать реакции между электролитами с помощью естественного (русского или родного) языка и языка химии;
- ✓ проводить опыты, подтверждающие химические свойства основных классов неорганических веществ.
- ✓ обращаться с лабораторным оборудованием и нагреватель ными приборами в соответствии с правилами техники безопасности;
- ✓ наблюдать за свойствами веществ и явлениями, происходящими с веществами;
- ✓ описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
- ✓ делать выводы по результатам проведенного эксперимента.

Метапредметные результаты обучения

- ✓ Учащийся должен уметь:
- ✓ делать пометки, выписки, цитирование текста;
- ✓ составлять доклад;
- ✓ составлять на основе текста графики, в том числе с применением средств ИКТ;
- ✓ владеть таким видом изложения текста, как рассуждение;
- ✓ использовать такой вид мысленного (идеального) моделиро вания, как знаковое моделирование (на примере уравнений реакций диссоциации, ионных уравнений реакций, полуреакций окисления-восстановления);
- ✓ различать компоненты доказательства (тезис, аргументы и форму доказательства);
- ✓ осуществлять прямое индуктивное доказательство;
- ✓ определять, исходя из учебной задачи, необходимость непосредственного или опосредованного наблюдения;
- ✓ самостоятельно формировать программу эксперимента.

Резервное время — 1 ч.

КАЛЕНДАРНО – ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ. ХИМИЯ 8 КЛАСС,2 Ч В НЕДЕЛЮ, 70 Ч В ГОД

№	Содержание учебного материала	Кол-во	Дата	Дата
п/п		часов	план	факт
1 четве	рть 16 ч			
	Введение	6ч		
1.	Предмет химии.	1		
2.	Превращения веществ. История развития	1		
	химии.			
3.	ПСХЭ Д.И.Менделеева. Знаки химических	1		
	элементов.			
4.	Химические формулы. Относительные	1		
	атомная и молекулярная массы.			
5.	Массовая доля элемента в соединениях.	1		
6.	Практическая работа № 1 «Знакомство с	1		
	лабораторным оборудованием. Правила ТБ».			

	1. Атомы химических элементов.	10ч
7	Основные сведения о строении атомов.	1
8	Протоны. Нейтроны. Изотопы.	1
9	Электроны. Строение электронных оболочек.	1
10	ПСХЭ и строение атомов.	1
11	Ионная химическая связь.	1
12	Ковалентная неполярная химическая связь.	1
13 .	Электроотрицательность. Ковалентная полярная химическая связь.	1
14.	Металлическая химическая связь.	1
15.	Обобщение по теме «Атомы химических элементов».	1
16.	Контрольная работа по теме «Атомы химических элементов».	1
	2.Простые вещества.	74
17.	Металлы.	1
18.	Неметаллы.	1
19	Количество вещества. Молярная масса вещества.	1
20	Молярный объём газообразных веществ.	1
21	Решение задач по теме «Количество вещества».	1
22	Обобщение по теме «Простые вещества».	1
23	Контрольная работа по теме «Простые вещества».	1
	3. Соединения химических элементов.	144
24	Степень окисления.	1
25	Валентность.	1
26	Оксиды. Летучие водородные соединения.	1
27	Основания.	1
28	Кислоты.	1
29	Соли.	1
30	Основные классы неорганических веществ.	1
31	Кристаллические решётки.	1
32	Чистые вещества и смеси	1

33	Разделение смесей. Очистка веществ.	1		
34	Практическая работа № 2 «Очистка загрязнённой поваренной соли».	1		
35	Массовая и объёмная доли компонентов смеси.	1		
36	Практическая работа № 3 «Приготовление раствора с заданной массовой долей растворенного вещества».	1		
37	Контрольная работа по теме «Соединения химических элементов».	1		
	4. Изменения, происходящие с веществами.	11ч		
38	Химические реакции.	1		
39	Закон сохранения массы веществ.	1		
40	Химические уравнения.	1		
41	Реакции разложения.	1		
42	Реакции соединения.	1		
43	Реакции замещения.	1		
44	Реакции обмена.	1		
45	Типы химических реакций на примере воды.	1		
46	Расчёты по химическим уравнениям.	1		
47	Обобщение по теме «Изменения, происходящие с веществами».	1		
48	Контрольная работа по теме «Изменения, происходящие с веществами».	1		
	5. Растворы.	18ч		
49	Растворение. Растворимость. Типы растворов.	1		
50	Электролитическая диссоциация.	1		
51	Основные положения ТЭД.	1		
52	Ионные уравнения реакции.	1		
53-54	Кислоты в свете ТЭД.	2		
55-56	Основания в свете ТЭД.	2		
57	Соли в свете ТЭД.	1		
			+	
58	Оксиды.	1		

	неорганических веществ.	
60	Практическая работа № 4 «Генетическая связь».	1
61-62	Окислительно-восстановительные реакции.	2
63-64	Свойства веществ в свете окислительновосстановительных реакций.	2
65	Обобщение по теме «Растворы».	1
66	Контрольная работа по теме «Растворы».	1
	6.Итоговое повторение.	44
67	ПЗ и ПСХЭ. Атомы химических элементов. Соединения химических элементов	1
68	Химические реакции. Растворы.	1
69	Обобщение по курсу Химии 8 класс	1
70	Итоговая контрольная работа	1